Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37034806

RESUMO

Oxytocin is a neuropeptide critical for maternal physiology and social behavior, and is thought to be dysregulated in several neuropsychiatric disorders. Despite the biological and neurocognitive importance of oxytocin signaling, methods are lacking to activate oxytocin receptors with high spatiotemporal precision in the brain and peripheral mammalian tissues. Here we developed and validated caged analogs of oxytocin which are functionally inert until cage release is triggered by ultraviolet light. We examined how focal versus global oxytocin application affected oxytocin-driven Ca2+ wave propagation in mouse mammary tissue. We also validated the application of caged oxytocin in the hippocampus and auditory cortex with electrophysiological recordings in vitro, and demonstrated that oxytocin uncaging can accelerate the onset of mouse maternal behavior in vivo. Together, these results demonstrate that optopharmacological control of caged peptides is a robust tool with spatiotemporal precision for modulating neuropeptide signaling throughout the brain and body.

3.
J Cell Sci ; 135(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35575254
4.
Cancers (Basel) ; 14(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205791

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Perhexiline, a prophylactic anti-anginal drug, has been reported to have anti-tumour effects both in vitro and in vivo. Perhexiline as used clinically is a 50:50 racemic mixture ((R)-P) of (-) and (+) enantiomers. It is not known if the enantiomers differ in terms of their effects on cancer. In this study, we examined the cytotoxic capacity of perhexiline and its enantiomers ((-)-P and (+)-P) on CRC cell lines, grown as monolayers or spheroids, and patient-derived organoids. Treatment of CRC cell lines with (R)-P, (-)-P or (+)-P reduced cell viability, with IC50 values of ~4 µM. Treatment was associated with an increase in annexin V staining and caspase 3/7 activation, indicating apoptosis induction. Caspase 3/7 activation and loss of structural integrity were also observed in CRC cell lines grown as spheroids. Drug treatment at clinically relevant concentrations significantly reduced the viability of patient-derived CRC organoids. Given these in vitro findings, perhexiline, as a racemic mixture or its enantiomers, warrants further investigation as a repurposed drug for use in the management of CRC.

5.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653580

RESUMO

Nearly all mammals rely on lactation to support their young and to ensure the continued survival of their species. Despite its importance, relatively little is known about how milk is produced and how it is ejected from the lumen of mammary alveoli and ducts. This review focuses on the latter. We discuss how a relatively small number of basal cells, wrapping around each alveolar unit, contract to forcibly expel milk from the alveolar lumen. We consider how individual basal cells coordinate their activity, the fate of these cells at the end of lactation and avenues for future deliberation and exploration.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Animais , Plasticidade Celular , Células Epiteliais/citologia , Feminino , Humanos , Lactação , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/fisiologia
6.
Gastroenterology ; 162(3): 890-906, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34883119

RESUMO

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor ß was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.


Assuntos
Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/fisiologia , Carcinogênese/patologia , Linhagem da Célula , Neoplasias Colorretais/patologia , Células-Tronco Mesenquimais/fisiologia , Actinas/genética , Actinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígeno CD146/genética , Antígeno CD146/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Diferenciação Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/patologia , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Organoides/patologia , Organoides/fisiologia , Prognóstico , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Análise de Sequência de RNA , Taxa de Sobrevida , Microambiente Tumoral
7.
J Vis Exp ; (175)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34542536

RESUMO

Hepatic metastasis of colorectal cancer (CRC) is a leading cause of cancer-related death. Cancer-associated fibroblasts (CAFs), a major component of the tumor microenvironment, play a crucial role in metastatic CRC progression and predict poor patient prognosis. However, there is a lack of satisfactory mouse models to study the crosstalk between metastatic cancer cells and CAFs. Here, we present a method to investigate how liver metastasis progression is regulated by the metastatic niche and possibly could be restrained by stroma-directed therapy. Portal vein injection of CRC organoids generated a desmoplastic reaction, which faithfully recapitulated the fibroblast-rich histology of human CRC liver metastases. This model was tissue-specific with a higher tumor burden in the liver when compared to an intra-splenic injection model, simplifying mouse survival analyses. By injecting luciferase-expressing tumor organoids, tumor growth kinetics could be monitored by in vivo imaging. Moreover, this preclinical model provides a useful platform to assess the efficacy of therapeutics targeting the tumor mesenchyme. We describe methods to examine whether adeno-associated virus-mediated delivery of a tumor-inhibiting stromal gene to hepatocytes could remodel the tumor microenvironment and improve mouse survival. This approach enables the development and assessment of novel therapeutic strategies to inhibit hepatic metastasis of CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Organoides , Veia Porta , Microambiente Tumoral
8.
Development ; 148(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34184027

RESUMO

Bone morphogenetic protein (BMP) signaling is required for early forebrain development and cortical formation. How the endogenous modulators of BMP signaling regulate the structural and functional maturation of the developing brain remains unclear. Here, we show that expression of the BMP antagonist Grem1 marks committed layer V and VI glutamatergic neurons in the embryonic mouse brain. Lineage tracing of Grem1-expressing cells in the embryonic brain was examined by administration of tamoxifen to pregnant Grem1creERT; Rosa26LSLTdtomato mice at 13.5 days post coitum (dpc), followed by collection of embryos later in gestation. In addition, at 14.5 dpc, bulk mRNA-seq analysis of differentially expressed transcripts between FACS-sorted Grem1-positive and -negative cells was performed. We also generated Emx1-cre-mediated Grem1 conditional knockout mice (Emx1-Cre;Grem1flox/flox) in which the Grem1 gene was deleted specifically in the dorsal telencephalon. Grem1Emx1cKO animals had reduced cortical thickness, especially layers V and VI, and impaired motor balance and fear sensitivity compared with littermate controls. This study has revealed new roles for Grem1 in the structural and functional maturation of the developing cortex.


Assuntos
Proteína Morfogenética Óssea 1/antagonistas & inibidores , Encéfalo/fisiologia , Medo/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neurônios Motores/metabolismo , Transdução de Sinais , Animais , Comportamento Animal , Proteína Morfogenética Óssea 1/genética , Encéfalo/embriologia , Diferenciação Celular , Proliferação de Células , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Células-Tronco , Transcriptoma
9.
Sci Rep ; 11(1): 7200, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785826

RESUMO

The intestinal stroma provides an important microenvironment for immune cell activation. The perturbation of this tightly regulated process can lead to excessive inflammation. We know that upregulated Toll-like receptor 4 (TLR4) in the intestinal epithelium plays a key role in the inflammatory condition of preterm infants, such as necrotizing enterocolitis (NEC). However, the surrounding stromal contribution to excessive inflammation in the pre-term setting awaits careful dissection. Ex vivo co-culture of embryonic day 14.5 (E14.5) or adult murine intestinal stromal cells with exogenous monocytes was undertaken. We also performed mRNAseq analysis of embryonic and adult stromal cells treated with vehicle control or lipopolysaccharide (LPS), followed by pathway and network analyses of differentially regulated transcripts. Cell characteristics were compared using flow cytometry and pHrodo red phagocytic stain, candidate gene analysis was performed via siRNA knockdown and gene expression measured by qPCR and ELISA. Embryonic stromal cells promote the differentiation of co-cultured monocytes to CD11bhighCD11chigh mononuclear phagocytes, that in turn express decreased levels of CD103. Global mRNAseq analysis of stromal cells following LPS stimulation identified TLR signaling components as the most differentially expressed transcripts in the immature compared to adult setting. We show that CD14 expressed by CD11b+CD45+ embryonic stromal cells is a key inducer of TLR mediated inflammatory cytokine production and phagocytic activity of monocyte derived cells. We utilise transcriptomic analyses and functional ex vivo modelling to improve our understanding of unique molecular cues provided by the immature intestinal stroma.


Assuntos
Enterocolite Necrosante/patologia , Inflamação/patologia , Intestinos/patologia , Monócitos/patologia , Células Estromais/patologia , Animais , Células Cultivadas , Técnicas de Cocultura , Enterocolite Necrosante/genética , Redes Reguladoras de Genes , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Células Estromais/metabolismo , Transcriptoma
10.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G506-G520, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33470182

RESUMO

The stem/progenitor cells of the developing intestine are biologically distinct from their adult counterparts. Here, we examine the microenvironmental cues that regulate the embryonic stem/progenitor population, focusing on the role of Notch pathway factor delta-like protein-1 (DLK1). mRNA-seq analyses of intestinal mesenchymal cells (IMCs) collected from embryonic day 14.5 (E14.5) or adult IMCs and a novel coculture system with E14.5 intestinal epithelial organoids were used. Following addition of recombinant DLK1 (rDLK) or Dlk1 siRNA (siDlk1), epithelial characteristics were compared using imaging, replating efficiency assays, qPCR, and immunocytochemistry. The intestinal phenotypes of littermate Dlk1+/+ and Dlk1-/- mice were compared using immunohistochemistry. Using transcriptomic analyses, we identified morphogens derived from the embryonic mesenchyme that potentially regulate the developing epithelial cells, to focus on Notch family candidate DLK1. Immunohistochemistry indicated that DLK1 was expressed exclusively in the intestinal stroma at E14.5 at the top of emerging villi, decreased after birth, and shifted to the intestinal epithelium in adulthood. In coculture experiments, addition of rDLK1 to adult IMCs inhibited organoid differentiation, whereas Dlk1 knockdown in embryonic IMCs increased epithelial differentiation to secretory lineage cells. Dlk1-/- mice had restricted Ki67+ cells in the villi base and increased secretory lineage cells compared with Dlk1+/+ embryos. Mesenchyme-derived DLK1 plays an important role in the promotion of epithelial stem/precursor expansion and prevention of differentiation to secretory lineages in the developing intestine.NEW & NOTEWORTHY Using a novel coculture system, transcriptomics, and transgenic mice, we investigated differential molecular signaling between the intestinal epithelium and mesenchyme during development and in the adult. We show that the Notch pathway factor delta-like protein-1 (DLK1) is stromally produced during development and uncover a new role for DLK1 in the regulation of intestinal epithelial stem/precursor expansion and differentiation to secretory lineages.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Comunicação Celular , Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/enzimologia , Células Epiteliais/enzimologia , Mucosa Intestinal/enzimologia , Células Estromais/enzimologia , Animais , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Linhagem da Célula , Células Cultivadas , Técnicas de Cocultura , Regulação da Expressão Gênica no Desenvolvimento , Mucosa Intestinal/embriologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides , Via Secretória , Transdução de Sinais , Nicho de Células-Tronco , Transcriptoma
11.
Gastroenterology ; 160(4): 1224-1239.e30, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33197448

RESUMO

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs), key constituents of the tumor microenvironment, either promote or restrain tumor growth. Attempts to therapeutically target CAFs have been hampered by our incomplete understanding of these functionally heterogeneous cells. Key growth factors in the intestinal epithelial niche, bone morphogenetic proteins (BMPs), also play a critical role in colorectal cancer (CRC) progression. However, the crucial proteins regulating stromal BMP balance and the potential application of BMP signaling to manage CRC remain largely unexplored. METHODS: Using human CRC RNA expression data, we identified CAF-specific factors involved in BMP signaling, then verified and characterized their expression in the CRC stroma by in situ hybridization. CRC tumoroids and a mouse model of CRC hepatic metastasis were used to test approaches to modify BMP signaling and treat CRC. RESULTS: We identified Grem1 and Islr as CAF-specific genes involved in BMP signaling. Functionally, GREM1 and ISLR acted to inhibit and promote BMP signaling, respectively. Grem1 and Islr marked distinct fibroblast subpopulations and were differentially regulated by transforming growth factor ß and FOXL1, providing an underlying mechanism to explain fibroblast biological dichotomy. In patients with CRC, high GREM1 and ISLR expression levels were associated with poor and favorable survival, respectively. A GREM1-neutralizing antibody or fibroblast Islr overexpression reduced CRC tumoroid growth and promoted Lgr5+ intestinal stem cell differentiation. Finally, adeno-associated virus 8 (AAV8)-mediated delivery of Islr to hepatocytes increased BMP signaling and improved survival in our mouse model of hepatic metastasis. CONCLUSIONS: Stromal BMP signaling predicts and modifies CRC progression and survival, and it can be therapeutically targeted by novel AAV-directed gene delivery to the liver.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Colorretais/patologia , Imunoglobulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Hepáticas/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/mortalidade , Progressão da Doença , Feminino , Hepatócitos/metabolismo , Humanos , Imunoglobulinas/genética , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Br J Cancer ; 121(4): 293-302, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31289350

RESUMO

Cancer-associated fibroblasts (CAFs) were originally presumed to represent a homogeneous population uniformly driving tumorigenesis, united by their morphology and peritumoural location. Our understanding of CAFs has since been shaped by sophisticated in vitro and in vivo experiments, pathological association and, more recently, ablation, and it is now widely appreciated that CAFs form a group of highly heterogeneous cells with no single overarching marker. Studies have demonstrated that the CAF population contains different subtypes based on the expression of marker proteins with the capacity to promote or inhibit cancer, with their biological role as accomplices or adversaries dependent on many factors, including the cancer stage. So, while CAFs have been endlessly shown to promote the growth, survival and spread of tumours via improvements in functionality and an altered secretome, they are also capable of retarding tumorigenesis via largely unknown mechanisms. It is important to reconcile these disparate results so that the functions of, or factors produced by, tumour-promoting subtypes can be specifically targeted to improve cancer patient outcomes. This review will dissect out CAF complexity and CAF-directed cancer treatment strategies in order to provide a case for future, rational therapies.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Neoplasias/tratamento farmacológico , Animais , Fibroblastos Associados a Câncer/efeitos dos fármacos , Metabolismo Energético , Matriz Extracelular/fisiologia , Humanos , Camundongos , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Prognóstico
13.
Gut ; 68(4): 684-692, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29666172

RESUMO

OBJECTIVE: Serrated colorectal cancer (CRC) accounts for approximately 25% of cases and includes tumours that are among the most treatment resistant and with worst outcomes. This CRC subtype is associated with activating mutations in the mitogen-activated kinase pathway gene, BRAF, and epigenetic modifications termed the CpG Island Methylator Phenotype, leading to epigenetic silencing of key tumour suppressor genes. It is still not clear which (epi-)genetic changes are most important in neoplastic progression and we begin to address this knowledge gap herein. DESIGN: We use organoid culture combined with CRISPR/Cas9 genome engineering to sequentially introduce genetic alterations associated with serrated CRC and which regulate the stem cell niche, senescence and DNA mismatch repair. RESULTS: Targeted biallelic gene alterations were verified by DNA sequencing. Organoid growth in the absence of niche factors was assessed, as well as analysis of downstream molecular pathway activity. Orthotopic engraftment of complex organoid lines, but not BrafV600E alone, quickly generated adenocarcinoma in vivo with serrated features consistent with human disease. Loss of the essential DNA mismatch repair enzyme, Mlh1, led to microsatellite instability. Sphingolipid metabolism genes are differentially regulated in both our mouse models of serrated CRC and human CRC, with key members of this pathway having prognostic significance in the human setting. CONCLUSION: We generate rapid, complex models of serrated CRC to determine the contribution of specific genetic alterations to carcinogenesis. Analysis of our models alongside patient data has led to the identification of a potential susceptibility for this tumour type.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Organoides/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Adenocarcinoma/metabolismo , Alelos , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Ilhas de CpG/genética , Reparo de Erro de Pareamento de DNA , Análise Mutacional de DNA , Progressão da Doença , Epigenômica , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Modelos Genéticos , Mutação , Organoides/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismo
14.
Mol Cancer ; 16(1): 19, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28137279

RESUMO

BACKGROUND: Breast cancer is the major cause of cancer-related mortality in women. It is thought that quiescent stem-like cells within solid tumors are responsible for cancer maintenance, progression and eventual metastasis. We recently reported that the chemokine receptor CCR7, a multi-functional regulator of breast cancer, maintains the stem-like cell population. METHODS: This study used a combination of molecular and cellular assays on primary mammary tumor cells from the MMTV-PyMT transgenic mouse with or without CCR7 to examine the signaling crosstalk between CCR7 and Notch pathways. RESULTS: We show for the first time that CCR7 functionally intersects with the Notch signaling pathway to regulate mammary cancer stem-like cells. In this cell subpopulation, CCR7 stimulation activated the Notch signaling pathway, and deletion of CCR7 significantly reduced the levels of activated cleaved Notch1. Moreover, blocking Notch activity prevented specific ligand-induced signaling of CCR7 and augmentation of mammary cancer stem-like cell function. CONCLUSION: Crosstalk between CCR7 and Notch1 promotes stemness in mammary cancer cells and may ultimately potentiate mammary tumor progression. Therefore, dual targeting of both the CCR7 receptor and Notch1 signaling axes may be a potential therapeutic avenue to specifically inhibit the functions of breast cancer stem cells.


Assuntos
Neoplasias Mamárias Experimentais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor Notch1/metabolismo , Receptores CCR7/genética , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/virologia , Camundongos , Camundongos Transgênicos , Receptor Notch1/genética , Receptores CCR7/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...